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Abstract 

An overview is given of the interactions encountered between humic substances (HS), 
ecotoxicants, and living organisms in the context of environmental remediation. The 
most important interactions identified include: binding interactions affecting chemical 
speciation and bioavailability of contaminants; interfacial interactions altering physical 
speciation or interphase partitioning of ecotoxicants; abiotic-biotic redox interactions 
that influence metabolic pathways coupled to pollutants; and finally direct and indirect 
interactions coupled to various physiological functions of living organisms. Because 
humics are polyfunctional, they can operate as binding agents and detoxicants, sorbents 
and flushing agents, redox mediators of abiotic and biotic reactions, nutrient carriers, 
bioadaptogens, and growth-stimulators. It is shown that these functions possess 
significant utility in the remediation of contaminated environments and as such humic-
based reactions pertinent to permeable reactive barriers, in situ flushing, bioremediation, 
and phytoremediation are examined in detail. Finally, this chapter introduces the novel 
concept of “designer humics” which are a special class of customized humics of the 
reduced structural heterogeneity and of the controlled size. They are developed and 
deployed to carry out one or more of the above in situ functions in an optimum manner 
and for the purpose of enhancing the efficacy of one or more remediation technologies. 
Designer humics possess specified reactive properties obtained by chemical 
modification and cross-linking of the humic backbone. This new class of reactive agents 
portend new opportunities for achieving enhanced remediation and for quantifying 
remediation performance. The latter is described in the context of the passive flux meter 
technology developed for direct measuring fluxes of contaminants and biomass.

1. Introduction 

Effective remediation of polluted environments is one of the crucial issues on Agenda 
21, which lists priorities for achieving sustainable development [1]. Eastern and Western 
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countries alike are currently facing environmental reclamation costs that are increasing 
exponentially. In the U.S. and Europe, remediation costs generally exceed the net 
economic value of the land, and often threaten responsible companies with bankruptcy. 
Given this perspective it is not surprising that scientists and engineers on both sides of 
the Atlantic have aggressively tried to develop novel technologies to meet regulatory 
standards at a fraction of the costs associated with traditional approaches (incineration, 
pump-and-treat, etc.) [2-7]. 

New remediation technologies are often discovered in process of overcoming 
limitations of current technologies, and in situ remediation is one novel class of 
technologies that shows considerable promise from both technical and economic 
perspectives [8-10]. In situ remediation relies upon natural and enhanced processes that 
govern the fate and transport of chemicals released in environment. To a large extent, 
the reliance on natural processes is predicated on a desire to control costs [11]. Thus, in 
situ technologies that deploy natural attenuating agents such as humic substances (HS) 
may be even more cost effective. 

HS are ubiquitous in the environment and comprise the most abundant pool of non-
living organic matter [12]. Their peculiar feature is polyfunctionality, which enables 
them to interact with both metal ions and organic chemicals. The palette of potential 
interactions includes ion exchange, complexation, redox transformations, hydrophobic 
bonding, etc. As a result, numerous studies have shown humics capable of altering both 
the chemical and the physical speciation of the ecotoxicants (ET) and in turn affecting 
their bioavailability and toxicity [13]. Hence, HS hold great promise functioning as 
amendments to mitigate the adverse impacts of ET and as active agents in remediation. 

The goal of this chapter is to elucidate emerging concepts of HS-based remediation 
technologies. Thus, the objectives are: (1) to categorize the interactions encountered 
between humics, ecotoxicants and living organisms in a polluted environment in the 
context of remediation chemsitry; (2) to assess the scope of current remedial 
applications of humics, and (3) to define promising directions of technological 
developments for remedial implementation of humics. 

2. Basic definitions and main features of humic substances 

2.1. GENESIS, SOURCES, AND RESERVES OF HUMIC SUBSTANCES IN THE 
ENVIRONMENT 

Humification is the chemical-microbiological process of transforming debris from living 
organisms into a general class of refractory organic compounds otherwise known as 
humic substances. It is the second largest process after photosynthesis and involves 
20 Gton C/a [12]. Humic substances account for 50 to 80% of the organic carbon of soil, 
natural water, and bottom sediments [14-16]. 

Humic materials are typically derived on an industrial scale from peat, sapropel, and 
coal. Peat is a heterogeneous mixture of more or less decomposed plant material 
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(humus) that accumulated in a water-saturated environment in the absence of oxygen 
[17]. Coalification of plant debris preserved in peat mires leads to the formation of 
humic coals. Terms like peat, lignite, subbituminous, bituminous and anthracite indicate 
different stages of the coalification process, and they also denote the rank of various 
coals. The term “brown coal” is often used for lignite and subbituminous coals, while 
“hard coal” indicates coals of higher rank. The net result of coalification is an extension 
of the humification process to include a continuous enrichment of fixed carbon with 
increasing rank. The relevant increments of carbon content, or % of the total mass, range 
from: 10-30 (peat), 30-40 (lignites), 40-65 (subbituminous), 65-80 (bituminous), and 
over 80 (anthracite) [18]. Sapropel is an unconsolidated sedimentary deposit rich in 
bituminous substances [19]. It is distinguished from peat in being rich in fatty and waxy 
substances and poor in cellulosic material. When consolidated into rock, sapropel 
becomes oil shale, bituminous shale, or sapropelic (boghead) coal.

The richest source of HS is leonardite, a soft brown coal-like deposit usually found 
in conjunction with deposits of lignite. Leonardite is the most widely used raw material 
for production of commercial humic preparations [20] followed by other low-rank coals, 
peat, and sapropel. Table 1 shows the reserves of inexpensive humics-rich materials are 
immense; however, these reserves are not currently being tapped for environmental 
remediation. 

Table 1. Reserves of humic materials of industrial value. 

Source Amount, Gton C Ref. 
Lignite and Subbituminous coal (Total/Recovered) 1120/512 [21] 
Anthracite and Bituminous coal (Total/Recovered) 3880/571 [21] 
Peat 400-500 [22] 
Sapropel 800 [23] 

2.2. CLASSIFICATION, STRUCTURE AND REACTIVITY OF HUMIC 
SUBSTANCES 

Being the products of stochastic synthesis, HS have an elemental composition that is 
non-stoichiometric, and structure which is irregular and heterogeneous [24]. Aiken et al. 
[14] defined HS as “a general category of naturally occurring, biogenic, heterogeneous 
organic substances generally characterized as yellow to black in colour, of high 
molecular weight, and refractory”. MacCarthy and Rice [25] hypothesized that the 
structural heterogeneity of humics may explain their resistance to biodegradation as 
longevity of HS in soils is typically on the order of thousands of years. The recalcitrant 
nature of humics is of practical relevance particularly when the objective is to develop 
soil/aquifer remediation technologies predicated on a reactive matrix that is not 
consumed by microorganisms during remediation. 
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The best illustration of the stochastic nature of HS is provided by the structural 
model of Kleinhempel (1970) [26] depicted in Figure 1. Clearly, as shown in this figure, 
a single structural formula cannot be ascribed to any humic sample; consequently, 
current definitions and classifications of HS are based on isolation procedures rather 
than on specific molecular features. Thus, the most commonly applied classification is 
based on humic constituent solubilitiy in dilute acids and bases [27]: humic acids (HA)
represent the fraction that is insoluble at pH<2, fulvic acids (FA) constitute the fraction 
soluble under all pH conditions, and humin is the fraction insoluble under all pH 
conditions. Alkali extraction is the most common industrial technique of preparing 
humics from brown coal or peat and the resultant salts of humic acids are called 
humates. Humates of sodium, potassium, and ammonium comprise the major fraction of 
the commercially available humic products. The term “humates” is often used to 
designate any commercially available humic-based product; however, in this chapter, the 
term is used only to designate the alkali/alkali-earth metals or ammonium salts of HA. 

Despite its stochastic nature, HS from different sources share common elements of 
structural organization. The average humic macromolecule consists of a hydrophobic 
aromatic core that is highly substituted with functional groups (mostly carboxyl and 
hydroxyl), and with side aliphatic chains. The core is ensconced in a periphery of 
hydrolysable carbohydrate-protein fragments [15, 28]. The mass fraction of peripheral 
fragments decreases with humification; hence, the contribution of labile fragments is 
greatest among humics derived from composts followed by peat, soil, and finally coal. 
Coal-derived humics are enriched in condensed aromatic structures and depleted in 
aliphatic carbohydrate moieties; thus, these humics are much more hydrophobic and less 
biodegradable than their peat-based counterparts. 

The structural complexity inherent in HS creates opportunities for a broad range of 
chemical interactions as indicated in Figure 2. Humics can be oxidized by strong 
oxidants; act as reducing agents; take part in protolytic, ion exchange, and complexation 
reactions; participate in donor-acceptor interactions; engage in hydrogen bonding; and 
take part in van-der-Waals interactions [29 and citations in it]. Hence, HS can interact 
practically with all chemicals released in the environment. More pertinent, however, is 
that humics interact with all classes of ecotoxicants including: heavy metals, petroleum 
and chlorinated hydrocarbons, pesticides, nitroaromatic explosives, azo dyes, actinides, 
etc. as shown in Figure 3. Indeed, humics are known to form stable complexes with 
heavy metals [30-34] and adducts with hydrophobic organic compounds [35-38]; 
produce charge-transfer complexes [39, 40]; act as electron shuttles [41, 42] and 
mediate redox reactions of transition metals [43], of chlorinated and nitrated 
hydrocarbons [44, 45]; adsorb onto mineral surfaces [46, 47]; and influence the 
interphase distribution of the contaminants [48, 49]. Finally, humics can strengthen the 
resistance of living organisms against non-specific stress factors [50, 51]. 

This unique constellation of reactive features strongly suggests HS have the potential 
to address a broad spectrum of needs within the focus area of environmental remediation 
[53]. This theoretical statement is confirmed by multiple examples of actual applications 
in remediation [54-58]. However, to ensure optimum and systematic application, an 
expanded knowledge base is needed concerning interactions between humics, 
ecotoxicants, and living organisms. 
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ion-exchange, complexation
complexation, hydrogen bonding
reduction-oxidation
donor-acceptor interaction 
(charge transfer complexes)
hydrophobic interaction

- COOH
- OH
>C=O

- CHn

Type of  related interactionStructural 
moiety

ion-exchange, complexation
complexation, hydrogen bonding
reduction-oxidation
donor-acceptor interaction 
(charge transfer complexes)
hydrophobic interaction

- COOH
- OH
>C=O

- CHn

Type of  related interactionStructural 
moiety

Figure 2. Diversity of structural moieties inherent in HS provides a broad range of 
chemical interactions they are able of. Humics can take part in protolytic, ion 
exchange, and complexation reactions; participate in donor-acceptor interactions; 
engage in hydrogen bonding; and take part in van-der-Waals interactions 

Petroleum
hydrocarbons

Heavy metals

Pesticides

Chlorinated
hydrocarbons

Polyaromatic
hydrocarbons

Organometallic
compounds

HS

Figure 3. As a result of the diverse reactivity of HS, they can interact with all 
classes of ecotoxicants (ET) in the polluted environment. Humics are known to 
form stable complexes with heavy metals and radionuclides; to produce adducts 
and charge transfer complexes with hydrophobic organic compounds; to mediate 
redox reactions of transition metals, chlorinated and nitrated hydrocarbons. 
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3. Remedial properties of HS in polluted environments 

Multiple interactions between HS, ecotoxicants, and living organisms may be organized 
to include: 

– binding interactions that impact chemical speciation and bioavailability of 
ecotoxicants; 

– sorptive interactions affecting physical speciation or interphase partitioning of 
ecotoxicants;  

– abiotic-biotic redox interactions that impact metabolic pathways coupled to 
ecotoxicants; and, 

– direct and indirect interactions with various physiological functions of living 
organisms. 

To assess the extent to which the above interactions translate into properties 
pertinent to environmental remediation, each will be considered in the context of the 
needs and the limitations existing among in situ remediation technologies. 

3.1. BASIC CONCEPTS AND NEEDS OF IN SITU REMEDIATION 
TECHNOLOGIES 

In situ remediation relies upon natural or enhanced processes and does not imply the 
removal of contaminated soil or the extraction of polluted groundwater [59]. The 
various in situ remediation technologies can be organized to include [60]: 

physical treatment: air sparging; directional wells; electrokinetics; fracturing (blast-
enhanced, hydraulic, pneumatic); thermal enhancements; vacuum extraction, etc.; 

chemical treatment: flushing; permeable reactive barrier (PRB) and treatment walls; 
immobilization/solidification; etc.; and 

biological treatment: intrinsic bioremediation, enhanced bioremediation, 
phytoremediation, etc.  

Most remedial technologies can be applied as a combination of physical-chemical, 
chemical-biological, or physical-chemical-biological treatments. The details of the 
above technologies will not be reviewed here but can be found elsewhere [59, 60], while 
corresponding reviews and case studies are available from relevant web-sites [4-7]. The 
most promising opportunities for the application of humics-based products and for the 
development of new humics-based remediation technologies are those predicated on 
strategies of in situ chemical and biological treatment. Examples of these technologies 
are given in Figure 4 and briefly described in the following paragraphs. 

PRBs are replaceable or permanent units installed across the flow path of a 
contaminant plume. The plume is allowed to migrate passively through the PRB and in 
the process contaminants are precipitated, sorbed, or degraded [61, 62]. PRBs are filled 
with different reactive materials such as metals or metal-based catalysts for degrading 
volatile organics, chelators or ion exchangers for immobilizing metal ions, nutrients and 
oxygen for microorganisms to enhance bioremediation, or other agents. The reactions 
that take place in barriers are dependent upon parameters such as pH, 
oxidation/reduction potential, concentrations, and kinetics. Reactive materials used must 
demonstrate sufficiently rapid kinetics to remove target contaminants from ground water 
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under natural gradient conditions. In addition, these reactive materials must be 
inexpensive and functional over an extended time horizon. Finally, pertinent chemical 
reactions must not produce and release toxic by-products. To date, a limited number of 
reactive materials satisfy these restrictions including zero valent iron (ZVI) – the most 
frequently utilized medium, zeolites, peat, lime and ferric oxyhydroxide [62, 63]. 
Humic-based materials show considerable promise as refractory and inexpensive 
reactive PRB components. This is particularly true wherever remediation involves a 
complex array of contaminants, and the reactive material must treat both soluble heavy 
metals and hydrophobic organics [54]. To evaluate the potential for using HS in PRBs, 
it is important to understand the sorptive and the redox properties of humics, and both 
are considered later in this chapter. For a case study on the application of humics in a 
sorptive PRB see Balcke et al. [64]. 

In Situ Remediation Technologies

Phytoremediation

HS

Chemical Treatments
Based on 

Biological Treatments

Figure 4. The technologies predicated on strategies of in situ chemical and 
biological treatment can be considered as target remediation technologies for 
application of HS-based products. The diagram shows the most promising 
examples of those. 

In situ flushing involves the injection or infiltration of an aqueous solution into a 
zone of contaminated soil or aquifer [60]. The injected fluid functions to increase the 
mobility and/or solubility of immobilized contaminants. Co-solvents and surfactants are 
most often the active agents used in flushing solutions [65]. In situ flushing has been 
used to treat soils and aquifers contaminated with halogenated volatiles, nonhalogenated 
semivolatiles, and nonvolatile metals [66]. The technology can encounter various 
problems stemming from the flushing agent. Flushing solutions can adhere to the soil or 
the aquifer matrix, accelerate microbial growth, and cause dissolved constituent 
precipitation within the porous matrix and thereby reduce system permeability. 
Furthermore, difficulties can occur with separating co-solvents and surfactants from the 
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elutriate. Left unaddressed, the above problems will manifest themselves in the form of 
greater demands for reactive agents and additional costs to treat and dispose waste fluids 
[66 and citations within]. However, such is not the case for flushing solutions comprised 
of HS: first because the cost of materials is low, and second because humics are 
biologically recalcitrant and not expected to support microbial growth. However, the use 
of humics does present its own challenges. For example, under certain conditions 
dissolved humics can adhere to soils and aquifer materials, and as a consequence, 
undermine efforts to flush by intercepting and immobilizing soluble contaminants. For a 
case study on the use of concentrated HS solutions for flushing technologies see review 
of Van Stempvoort et al. [67] and other related publications [68, 69]. 

Enhanced bioremediation is an active strategy whereby microbial processes are used 
to degrade or transform contaminants to less toxic or non-toxic forms. The technology 
specifically promotes microbial growth for the purpose of harnessing natural processes 
that effect direct and indirect contaminant degradation or transformation [70, 71]. Soils 
and aquifers contaminated with organic compounds such as petroleum hydrocarbons, 
volatile organic compounds, pesticides, wood preservatives, etc. have been treated 
successfully with bioremediation [72]. The technology has also been used to change the 
valence state of inorganics such as metal oxoforms for the purpose of inducing 
adsorption or uptake by microorganisms [73]. However, bioremediation can fail if the 
supply of nutrients, oxygen, or other electron acceptors is insufficient to support 
microbial growth. Furthermore, this type of remediation can be inhibited by high 
concentrations of contaminants or by the presence of other soluble constituents toxic to 
microorganisms. Other conditions such as pH or the presence of dissolved constituents 
more amenable to biodegradation can also affect the rate and efficiency of remediation. 
If used to enhance bioremediation, humics function as reactive agents that are not 
susceptible to degradation or expected to undergo co-metabolism with target 
contaminants. HS can serve as extracellular electron shuttles and accelerate microbial 
redox reactions [41, 42]. Humic-based products can in some cases ameliorate 
contaminant toxicity by transforming pollutants into less-toxic forms or by sequestering 
them in a separate phase and reducing bioavailability. With toxicants sequestered, 
microbial growth is stimulated, and from this the formation of bound residues may be 
intensified resulting in contaminants covalently bonded to humics [74-77]. Additional 
discussion on the detoxifying properties of humics is given later in this chapter. For a 
case study on intensified humification of TNT, see Thomas & Gerth [78]. 

Phytoremediation uses plants to intercept, accumulate, and/or degrade contaminants 
in soil and groundwater [79, 80]. The technology is applicable to a broad range of 
contaminants including numerous metals and radionuclides, various organic compounds 
(such as chlorinated solvents, petroleum hydrocarbons and their monoaromatic 
components benzene, toluene, ethylbenzene and xylene (BTEX), polychlorinated 
biphenyls (PCB), PAH, pesticides, explosives, nutrients, and surfactants). The 
technology requires plants which have specific characteristics including; tolerance to 
elevated contaminant concentrations; the tendency to produce significant root biomass; 
the capability of immobilizing contaminants through uptake, precipitation, or reduction; 
and the characteristic of retaining target contaminants within the roots such that special 
handling and disposal of shoots may be avoided [81, 82]. In this context, the application 
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of humics-based products poses several advantages, because as indicated above, HS are 
known to reduce the toxicity of contaminants and increase a tolerance of the plants to 
chemical stress [83-85]. In addition, they stimulate the development of roots [86, 87] 
and as a result, bring about a desirable increase in root biomass. For more details on the 
direct effects of HS on plants, see reviews by Kaschl & Chen [88] and Kulikova et al. 
[89]. 

Clearly, a case can be made for the use of humics and humic-based products to 
enhance chemical and biological in situ remediation. However, in order to develop 
systematic humics-based applications, the properties of HS must be studied in the 
context of each remedial technology. In the following sections the fundamental 
interactions between humics, ecotoxicants and living organisms in the polluted 
environments are considered.  
 
3.2. IMPACTS OF HS ON SPECIATION AND BIOAVAILABILITY OF 
ECOTOXICANTS 
 
As indicated above, the broad-spectrum reactivity of HS exists because the humic 
structure contains numerous functional groups and hydrophobic moieties. This enables 
humics to bind with both metal ions and organic chemicals. The general binding of HS 
to ecotoxicants in homogeneous system can be described by the following formalized 
equation: 

 HS + ET  HS·ET (1) 

The equilibrium constant K is commonly used to characterize this interaction: 

 
HSET

ET-HSK  (2) 

where [HS], [ET], and [HS-ET] represent equilibrium concentrations of the reagents and 
the reaction product. 

Due to the stochastic nature of humics, the stoichiometry of interaction (1) is 
unknown; hence, specific assumptions are introduced to facilitate the use of eq. (2). In 
the case of organic compounds, the most common approach is to treat humic substances 
as “dissolved sorbents” and the HS-ET interaction as a phase partitioning [90-92]. This 
approach assumes the equilibrium constant K equates to a partition coefficient 
characterizing a sorbate-sorbent interaction in a heterogeneous system. To account for 
the mass:volume ratio, the partition coefficient is normalized to the mass concentration 
of humics in solution, thus: 

 K
COC

HS

1 1
 (3) 

where KOC is a partition coefficient of ET normalized to mass concentration of soluble 
HS;  is the portion of the freely dissolved ET in the presence of HS, ETC]ET[ ; 
and HSC  is a mass concentration of HS expressed on an organic carbon basis (kg C/L). 
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From eq. (3), KOC can be found by determining the fraction of the freely dissolved 
ET in the presence of HS. This can be done using common analytical techniques with or 
without preliminary separation of the freely dissolved and the HS-bound species of ET 
[93-97]. The reported KOC values for polycyclic aromatic hydrocarbons (PAH) vary 
from 102 to 106 L/kg C [35, 36, 98-101]. The largest values of 105-106 L/kg C are
observed for partitioning of PAH having four and more rings in their structure (pyrene, 
benz(a)pyrene, fluoranthene, and others) [101-103]. Much lower binding affinity is 
observed for small polar molecules like triazines, anilines, phenols, etc. [104-107]. In 
addition, a very strong dependence of binding affinity on the structural properties of 
humics is worth noting. When compared to aquatic humic or fulvic acids, considerably 
higher KOC values are observed for humic acids derived from soil, peat and coal or for 
commercial humates enriched with aromatic moieties [100, 101, 108]. These findings 
are indicative of hydrophobic binding that is therefore a governing mechanism of 
interactions between humics and organic ET. The aromatics enriched humics from coal 
and mollisol are generally the most hydrophobic; consequently, they are more likely to 
bind organic contaminants than HS derived from other sources. This association 
between enhanced binding affinity and enriched levels of aromatic moieties within the 
humic structure was confirmed by the quantitative structure-activity relationship 
(QSAR) studies [101, 104, 109, 110]. 

The binding interactions with ET are of particular importance in remediation, as such 
interactions reduce concentrations of freely dissolved ET; and as a result leave the 
offending contaminant less available and perhaps less toxic to living organisms. This is 
shown in studies of the bioaccumulation [109, 111, 112] and the toxicokinetics [113-
115] of hydrophobic organic contaminants in the presence of dissolved humics. For 
example, the bioconcentration factor (BCF) of PAH in the presence of HS is directly 
proportional to the fraction of freely dissolved PAH [109, 116]. Furthermore, the 
partition coefficients determined from bioaccumulation matches those measured by 
equilibrium dialysis. Similar results are also obtained in acute toxicity studies of three 
PAHs (pyrene, fluoranthene and anthracene) and a wide range of HS samples from 
water, soil, peat and coal [117]. Hence, the partition coefficients determined by 
analytical methods can be used as reliable predictors of the capacity of humics to bind 
and detoxify (or sequester) organic ET in aquatic environments. This is further 
confirmed by QSAR-studies revealing a direct correlation between soluble humics 
aromaticity and the ability to detoxify and/or sequester target hydrophobic contaminants 
e.g., PAH [109, 117]. In contrast, similar studies show the detoxification effects of HS 
are less consistent with polar organic compounds [118-120]. 

The discussed impact of binding interactions on bioavailability of organic ET is even 
more pronounced where metals are concerned. As in case of organic ET, metal toxicity 
is related to the free aqua metal ion concentration rather than the total metal 
concentration. The binding of heavy metals to HS causes a change in metal speciation 
followed by a change in toxicity and bioaccumulation [121]. This is confirmed by a 
number of publications (see review [122] and the related recent publications [85, 123-
128]).

Figure 5 conveys the concept that HS can bind with ET and as a result, reduce the 
bioavailability and the toxicity of ET. As indicated in Fig. 5, contaminant detoxification 
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is most relevant in biologically based technologies such as phytoremediation and with in 
situ bioremediation. Depending on the contaminant, elevated concentrations can be toxic 
to microorganisms and plants and as such undermine remediation efforts unless local 
concentrations are reduced. The function of humics in this case is simply to reduce 
concentrations of freely dissolved ET while bioremediation or phytoremediation 
resumes. Thus, in the case of hydrophobic organic ET, hydrophobic humics from coal 
are likely to be more effective than HS extracted from other sources. This is an 
important practical outcome of the above noted QSAR studies. In case of metals, the 
structure-activity relationship is much more complex, and desired results may depend on 
the availability of "designer" humics or humics customized to enhance metal 
complexing properties; the concept of designer humics is discussed further in the final 
section of this chapter.  

KOC

reduction in species of
freely dissolved ET

HS  +  ET  HS ET

Target technology:
bioremediation 

phytoremediation

Function:
binding agents

detoxicants

toxic non-toxic

Figure 5. HS can bind ecotoxicant (ET) and as a result reduce the bioavailability 
and the toxicity of ET. This concept has immediate relevance in biologically based 
remediation technologies such as in situ bioremediation and phytoremediation.  

An extremely important issue constraining the application of humic substances in 
remediation is the unknown stability and longevity of humic complexes and/or adducts 
with ecotoxicants under environmental conditions. Clearly, quantitative studies on the 
dissociation kinetics of HS complexes with organic chemicals and heavy metals are 
particularly important for the proper evaluation of humics as reactive materials for PRB 
and other technologies. Similarly, the same is true of detoxification, long-term 
experiments are needed to evaluate humics as detoxicants. All investigations regardless 
of focus (i.e., humic/ET complexation, partitioning, or detoxification), need to be 
conducted under a range of environmental conditions and using a broad variety of humic 
samples.  
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3.3. IMPACTS OF HS ON THE INTERFACIAL INTERACTIONS OF 
ECOTOXICANTS WITH MINERALS 

The previously discussed binding of ET to HS in an aqueous system is often treated as a 
homogeneous reaction between a dissolved contaminant and a dissolved humic 
macromolecule. In the soil and the subsurface, however, the leading interaction is simply 
the heterogeneous sorptive partitioning of ET between the water and the solid phase. 
The water phase contains soluble inorganic ions and dissolved humic components, 
whereas the solid phase is represented by minerals and organo-mineral complexes. The 
latter are formed due to the sorption of humics onto mineral surfaces; the resultant 
humic coating functions as a natural sorbent with regard to contaminants. Hence, when 
fixed on mineral surfaces, HS can retard migration of trace metals and organic 
contaminants; but when dissolved in water, humics can facilitate the transport of the 
contaminants in the subsurface. Both processes are intensively discussed in the 
literature. For example, immobilization on organo-mineral particles has gathered 
considerable attention among researchers investigating the migration of hydrophobic 
organic contaminants (HOC) in soils and sediments [129], while facilitated transport 
with organo-mineral colloids has been the focus of the studies concerned with the 
subsurface migration of heavy metals and radionuclides [130, 131]. 

The immobilization of HOC by humic coatings recently captured the interest of 
scientists and engineers when it was shown the binding affinities for HOC were several 
orders of magnitude higher for humics immobilized on sediments compared to those 
dissolved in water [98, 132-134], and that the sorption capacity for HOC was 
proportional to the soil/sediment organic carbon mass fraction [135]. Typically, linear, 
equilibrium partitioning models are used to quantifying organic ET sorption [135]. 
These models employ a distribution coefficient KD to describe the partitioning between 
aqueous–phase and solid-phase concentrations of ET at equilibrium. As in the 
homogeneous system, the coefficient KD is normalized to the soil/sediment organic 
carbon mass fraction, ( OC), to yield a relatively constant partition coefficients 
KOC = KD/ OC for a given ET. Furthermore, as previously indicated, the sorption or 
partitioning is assumed to be linear, instantaneous, and reversible, that is not subject to 
competition among different HOC solutes. However, reported findings on HOC sorption 
by organo-mineral complexes reveal: sorption is indeed characterized by substantial 
non-linearity and hysteresis [136-140]; and that the sorption affinity of bound humics is 
more complicated than the simple structure-property relationships revealed by QSARs 
for homogeneous systems [141-143].  

To explain the non-ideal sorption phenomena and the complicated character of the 
QSPRs, a dual reactive domain model was developed and introduced almost 
simultaneously by Weber and his group [144] and Xing and Pignatello [145]. The 
formulation of this model assumed the organic (humic) material bound to mineral 
surfaces was comprised of two principal organic domains: one a highly amorphous 
domain (rubbery domain) and the other a relatively condensed domain (glassy domain). 
Sorption of HOC coupled to the amorphous domain was linear, fast and completely 
reversible; thus, it could be described using the linear equilibrium partitioning model. 
However, in the glassy domain, sorption was slow, non-linear and hysteretic [146]. 
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Numerous studies have since validated the two-domain model. However, disparate 
opinions exist in the literature as to the structural moieties (aliphatics or aromatics) 
responsible for the hysteretic sorption observed in the glassy domain. A number of 
recent publications [147-150, and citations in them] claim previous studies have 
overestimated the importance of the aromatic moieties present in humics and most 
specifically with regards to explaining the sorption of hydrophobic ET. Simultaneously, 
these contemporary investigators have espoused the concept, that humics possess an 
aliphatic component which plays a major role in controlling the sorption of organic 
contaminants. This assessment is predicated on results of comparative sorption studies 
involving non-polar probes (phenanthrene, pyrene, etc.) and an array of sorptive 
matrices including polymers enriched with aliphatics (as opposed to aromatic structures) 
and different humic fractions. The aliphatics thesis has acquired additional support from 
solid-state CPMAS 13C NMR data gathered on the presence of poly(methylene)-rich 
aliphatic domains in the different humic fractions and from correlations developed 
between aliphatic moieties and non-polar organic sorption [151, 152]. However, it must 
be noted that in these studies substantial differences exist between the organic matter 
found in humic coatings and the solid humics used in the NMR studies. The former 
represents heterogeneous surface complexes of minerals and organic macromolecules, 
whereas the latter represents a condensed polymeric phase. Hence, the discussed 
poly(methylene) aliphatic domains were detected in the condensed polymeric phase of 
humics, and as such caution should be exercised with regards to extrapolating their 
existence in humic coatings on mineral surfaces. Of course, insight into this question 
could be provided by conducting analogous NMR studies of model humic-clay 
complexes obtained using well-characterized humics. 

From the above considerations, the following strategies can be formulated for the use 
of HS in remediation. Humics enriched with glassy rigid domains in their structure 
(supposedly, rich in aliphatics) are preferential in applications as reactive materials in 
sorptive barriers designed to intercept and retain non-polar organic ET. The 
corresponding concept is shown in Fig. 6. These humics have the highest sorption 
affinity for organic ET and provide the slowest desorption kinetics, or the highest 
retardation of the organic ET. In terms of the "designer" humics, the best candidates for 
a use as HOC-sorbents would be cross-linked humics rich in rigid or glassy domains. A 
potentially cost effective method of creating humic-based sorptive PRBs is to construct 
them without excavation, in other words, use an in situ process of attaching humics to 
the aquifer matrix. G. Balcke et al. [64] are among the first to investigate an in situ
approach of coating mineral surfaces with injected humics. QSAR studies provide 
considerable insight into the adsorption mechanism responsible for the adherence of 
humics onto mineral surfaces [153]. These studies show the highest affinity for mineral 
surfaces is seen for humics enriched with aromatics, and that sorption reversibility is 
inversely proportional to the molecular weight of the humics used. Hence, aromatic-rich 
humics of high molecular weight are likely to be the best candidates for producing 
reactive coatings on mineral surfaces. 

Illustrated in Fig. 7 is yet another process whereby an ecotoxicant bound to organic-
mineral complex is mobilized due to the formation of adducts with dissolved humics. 
The surfactant properties of HS can be used to develop humic-based flushing agents 
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suitable for the in situ remediation of soils and aquifers contaminated with hydrophobic 
organic chemicals. Aromatics-rich dissolved humics could be the best candidates for this 
purpose. The reduction of ET concentrations in groundwater will cause a shift in the 
partition equilibrium towards groundwater and ultimately result in total contaminant 
removal. Van Stempvoort et al. [67] present a case study on organic ET mobilization 
using concentrated Aldrich humic acid solutions. 

clay-HS + ET  clay-HS·ET
KOC

immobilization 
of freely dissolved ET 

Target technology:
permeable 

reactive barriers

Function:
sorbents

reactive materials

Figure 6. Sorption of ET by the stationary HS-mineral complexes effectively 
retards the transport of ET in groundwater. This concept can be extended to the 
design of PRBs where HS-mineral complexes comprise the surfaces of reactive 
materials and function to intercept and retain mobile ET from groundwater. 

+  HS   
KOC

clay-OM-ET clay-OMHS·ET +

mobilization of ET 
bound to organo-mineral 

complexes 

Target technology:
flushing 

technologies

Function:
solubilizing

agents

Figure 7. Dissolved humics form HS-ET complexes and enhance ecotoxicant 
desorption from the mineral surfaces. Under this scenario, HS solutions may be 
used as flushing agents to facilitate transport of contaminants through an aquifer. 
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Another application of the surface active properties of concentrated solutions of HS 
is to facilitate the flow of water through hydrophobic zones of contaminated aquifer. For 
example, in areas contaminated with residual immiscible hydrocarbons and dense non-
aqueous phase liquids the aquifer matrix is sufficiently hydrophobic that the flow of 
water through the medium is inhibited. Humics introduced into the mobile water phase 
will reduce the interfacial tension at the surface of porous matrix and permit the aqueous 
phase to penetrate the hydrophobic medium. With nutrients and electron 
donors/acceptors supplied, local indigenous microorganisms are stimulated to degrade 
contaminants. Thus, it is not always necessary to mobilize the contaminant; rather, in 
this case the main goal is to facilitate the penetration of groundwater, laden with 
nutrients and electron donors/acceptors, into the contaminated hydrophobic soil matrix.  

3.4. IMPACTS OF HS ON THE METABOLISM OF ECOTOXICANTS DUE TO 
ABIOTIC AND BIOTIC REDOX MEDIATION 

Many ecotoxicants such as petroleum hydrocarbons, their monoaromatic components 
(e.g., BTEX), hydrazines and amines are highly reduced. Hence, oxidation is the 
primary path of degradation. On the other hand, many contaminants are highly oxidized 
such as chlorinated hydrocarbons, nitroaromatics, and anions of transition metals, and 
for these pollutants reduction is the feasible pathway of terminal transformation. 
Reported values of formal electrode potentials for HS vary from +0.15 to +0.79 [28, 
154-158]. From this range and the reversibility of redox transformations, it may be 
surmised that the redox properties of humics are attributable to the quinonoid moieties 
present in the aromatic core [159]. Moreover, direct electrochemical evidence exists on 
the quinonoid nature of the redox-active units [160]. Natural organic matter (NOM) 
(particularly, the polyphenol fraction) gives an electrode response similar to that of 
model quinones such as juglone, lowsone, anthraquinone disulphonate (AQDS). Hence, 
similar to quinones, humics can participate both in abiotic and biotic redox 
transformations of ET in contaminated environments. 

Several studies can be cited where HS were shown to participate in abiotic redox 
transformations. For example, direct abiotic reduction of Cr(VI) by HS was reported 
[161-164]. In addition, reduction of highly oxidized actinides such as Pu(VI,V) and 
Np(VI) also has been demonstrated [165, 166]. However, U(VI) and Np(V) reduction 
was not observed with HS of natural origin [167]. The customized humic materials of 
the enhanced reducing capacity can be of particular value to serve that purpose. Their 
synthesis is discussed further in this chapter. Another example of an abiotic redox 
reaction where transition metal complexes of HS catalyse the abiotic reduction of a 
priority pollutant is reported by O’Loughlin et al. [168]. They showed that Ni-HS 
complexes effectively enhanced the reduction of different chlorinated hydrocarbons in 
the presence of Ti(III) citrate as the bulk reductant. Similar catalytic effects were caused 
by Cu-HS complexes. Hence, humics represent potential reactive materials for the 
immobilization of highly oxidized species of radionuclides and heavy metals, and for the 
reduction of highly oxidized organics (Fig. 8). 
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Oxidized organic contaminants (chlorinated hydrocarbons):

RCl + H+

RH + Cl-

Oxidant
[Ti(IV)]

Reductant
[Ti(III)]

Abiotic reduction of metal oxoforms:  

Function:
reducing agents

catalysts

Target technology:
permeable reactive  

barriers

ee-

Ni(II)-HS

Ni(I)-HS

e e-

CrO4
2- + HSRed

e Cr3++ HSOx

HS HS+ + ne ; FE0 = 0.15 – 0.79 V

Figure 8. Reported values of formal electrode potential for HS vary from +0.15 to 
+0.79 [157, 158]. Over this range HS can facilitate both direct and indirect abiotic 
reduction of highly oxidized contaminants. The given reactions demonstrate direct 
abiotic reduction of oxoforms of high valence metals on the example of Cr(VI) 
[161-164] and show mechanism of catalytic impact of transition metal complexes 
of HS on kinetically slow abiotic reduction of organic contaminants by the bulk 
reductant as reported by O'Loughlin et al. [168]. 

Recently, considerable attention has been focused on the ability of humics to mediate 
the microbial degradation of various contaminants (see review [169]). Humics possess 
the unique capability of functioning as both an electron acceptor and a donor depending 
on environmental conditions [41, 42]. This ability permits humics to facilitate both 
oxidative and reductive biodegradation as is shown in Figs. 9 and 10. Under anoxic 
conditions, humics operate as terminal electron acceptors supporting the mineralization 
of various organic pollutants to CO2 by anaerobic microbial communities [44, 170, 171]. 
Fig. 9 illustrates the feasibility of HS functioning as redox mediators within a technology 
designed to bring about in situ oxidative bioremediation [56]. 

It has also been widely reported that HS facilitate reductive biodegradation by 
shuttling electrons from microorganisms to various highly oxidized organic 
contaminants (e.g., chlorinated hydrocarbons and azo dyes [172-174] as well as to high 
valence metals (e.g., Cr(VI), U(VI), and Tc(VII)) [43, 175, 176]. Fig. 10 reveals that HS 
can mediate reductive biodegradation both directly via shuttling electrons from 
microorganisms to high valence metals or oxidized organics, and indirectly via 
interactions with different Fe(III) oxide minerals [177]. Hence, it is plausible for humics 
to function as redox mediators within technologies designed to bring about in situ
reductive bioremediation [177]. 
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Highly oxidized contaminants (e.g., high valence metals):

Reductive biodegradation

donorOx

donorRed

U(VI)aq

U(IV)s

ee-

HSOx

HSRed

e e-

Target technology:
bioremediation

Function:
electron shuttles

microbe

Fe(III)solid

Fe(II)aq

ee-

Figure 9. Under anoxic conditions, humics function as terminal electron acceptors 
or redox mediators supporting the oxidative biodegradation of the reduced organic 
pollutants to CO2 by anaerobic microbial communities. An example of the 
corresponding technological development is published on the site of the USGS 
[56].

Oxidative biodegradation under anoxic conditions 

Highly reduced contaminants (petroleum hydrocarbons):

Fe(III) 
oxide minerals

Fe(II)

e-e e
CO2+H+

RH +2[O]

e-
HSRed

HSOx

microbe

Target technology:
bioremediation

Function:
electron shuttles

Figure 10. HS can participate in the reductive biodegradation of various highly 
oxidized contaminants (i.e., metal oxoforms or chlorinated hydrocarbons) either by 
direct shuttling electrons from microorganisms or via interaction with Fe-oxides. 
Enhanced bioreduction of U(VI) was described in [43]. Operating as redox 
mediators, it is plausible for HS to function in technologies designed to bring about 
in situ reductive bioremediation [177].
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Given the above described electron shuttling properties, it is conceivable humics can 
be used to facilitate or stimulate a suite of microbially mediated redox reactions 
pertinent to in situ bioremediation. However, the primary factor limiting their 
effectiveness is the structural polydispersity and heterogeneity which translates into 
reactive properties that are highly variable between natural sources and amongst 
different humic fractions. Gu and Chen [43] revealed a wide disparity in redox 
mediating properties among humic samples of different origin and fractional 
composition. For example, the best performance in the abiotic reduction of Cr(VI) and 
Fe(III) are observed with a polyphenols-rich fraction of natural organic matter (NOM). 
However, soil humics enriched with polycondensed aromatic moieties are more effective 
in mediating the microbial reduction of Cr(VI) and U(VI). To overcome the problem of 
structural heterogeneity and polydispersity, directed modification of HS may be 
advantageous, e.g. the incorporation of additional quinonoid moieties to bring about a 
desired enhancement in redox-capacity [178]. 

Finally, it is necessary to point out that HS exhibit yet another kind of mediating 
effect on the biotic transformation of organic ET; this is the covalent bonding to humics 
also known as oxidative coupling [179]. This process includes the oxidation, generation, 
and rearrangement of free radicals, and the incorporation of the ecotoxicant into the HS 
structure. To introduce oxidative coupling into the practice of remediation, 
biostimulators of this process must be designed. Early efforts to initiate oxidative 
coupling with low molecular weight initiators (substrates of oxidoreductive enzymes) 
proved inefficient [180]. An alternative approach, using high-molecular weight humics-
based promoters deserves further consideration. These promoters can be prepared by 
directed modification of humic materials, given the properties of such materials are 
clearly defined by environmental microbiologists. 

3.5. IMPACTS OF HUMICS-ECOTOXICANTS INTERACTIONS ON LIVING 
ORGANISMS 

The pool of data describing the direct biological effects of HS is vast, miscellaneous, 
and controversial. The array of biotargets studied includes pure cell cultures, bacteria, 
algae, fungi, higher plants, animals, and humans. Some authors show humics stimulating 
the growth of higher plants [51, 181-183] and microbial communities [184-186]. Other 
investigators find HS strengthen the resistance of higher plants under stress [50, 52, 87] 
and as a consequence, define humics as natural adaptogens. Mazhul et al. [187] and 
Vigneault et al. [188] believe humics have a direct impact on cells by changing the 
permeability of the cell membrane; whereas others claim HS increase the bioavailability 
of nutrients via the formation of metal-HS complexes [181, 189].  

Given the growth stimulating and adaptogenic (anti-stressor) activity of humics, 
these substances may be useful as agents to enhance bioremediation and, in particular, 
phytoremediation. Fig. 11 conveys a concept of humics use in phytoremediation 
technologies. The beneficial effects of HS on plant growth in the polluted environment 
can be related to an increase in nutrient supply, to an improvement of the overall plant 
development, and to an increased resistance to chemical stress [190, 191]. In the context 
of phytoremediation, it is well documented that humics cause an increase in root growth 
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superior over that of the shoot [192]. Taken together, the combined effects humics 
suggest they are engaged facilitating nutrient transport, promoting plant growth, and 
serving as bioadaptogens.  

HS + ET

Increase in
nutrient 
uptake

Function:
nutrient carriers

growth promoters
bioadaptogens

Target technology:
phytoremediation

Increase in
root 

biomass

Increase in
stress 

resistance

Figure 11. Potential functions performed by HS for higher plants in the polluted 
environments and their associated biological responses. 

Existing studies on quantitative-structure activity relationships for beneficial effects 
of humics on higher plants deliver contradicting results [51]. The most consistent are the 
studies on the effects exerted by high and low molecular weight humic fractions. It is 
shown that high molecular weight fractions promoted the plant growth, but decrease 
enzyme activity [86, 193]; accelerate root differentiation [194]; and readily adsorb onto 
the cell wall, but do not enter the cell [195]. At the same time, low molecular weight 
fractions were shown to reach the plasmalemma of root cells and, in part, were 
translocated into the shoots [196]. Such observations brought Nardi with co-workers to 
review the physiological functions of HS on higher plants [51] and to conclude that it 
was the lower molecular weight humic fractions that acted at the symplast and directly 
influenced plant metabolism, whereas the higher molecular weight fractions operated 
mainly on the cell surface where they influenced differentiation and growth at the 
apoplast. Hence, the reported positive effects on plant growth were induced by the 
lighter fractions of humic matter. 

The conditions of polluted environment require meticulous consideration, when 
rationalizing the use of humics to enhance phytoremediation. Another recent review on 
molecular size dependent impacts of humics-ecotoxicants interactions on biota by 
Perminova et al. [122] should be particularly mentioned here. This review demonstrates 
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that the adverse effects of the ecotoxicants are always lower if those contaminants 
possessed a strong affinity for humics representing the higher molecular weight fraction. 
Whereas for ecotoxicants having a greater affinity for lower molecular weight fraction, 
toxicity can decrease, remain the same or increase. It is hypothesized that for humics of 
high molecular weight, the complex with the ET forms that cannot penetrate the cell 
membrane and, hence, reduces bioavailability of the ecotoxicant. In case of humics of 
low molecular weight, the corresponding complex (or associate) is translocated to the 
interior of the cell where transformations of the humic-ET complex occur under the 
prevailing conditions inside the living cell interior. If the complex (associate) does not 
dissociate under cellular conditions, no additional toxicity occurs. However, if the 
complex (associate) breaks down, the toxic effects of the ET will be enhanced. Typical 
contaminants likely to share a high affinity for the heavier humics are: HOC like 
polycyclic aromatic and polychlorinated hydrocarbons, and metals like Cu and Pb. ET 
among the group most likely to bind with lighter humics are: trace metals and organic 
chemicals which bind to humic molecules via ion exchange or hydrogen binding, or the 
other mechanisms involving not the core but functional moieties of the humic 
compound. Examples of this group of ET include cadmium, Cr(VI), substituted 
phenols/anilines, and others.  

Hence, to ensure positive biological effects of HS on higher plants in the polluted 
environments the preference should be given to a use of humics of higher molecular 
weight. More research on the biological effects of well characterized HS is needed to 
develop sound scientific base for humics applications in phytoremediation. 

4. Design of humic materials of the desired properties, or how to make humics 
work for remediation technologies  

Despite the diverse protective functions transferable to humics in a polluted 
environment, application of humics-based products for remediation remains limited. 
Two fundamental reasons can be formulated as to why HS are not widely used. First, 
few natural HS possess the specific reactive properties required to treat selected 
contaminants. Second, humics by definition are polydisperse and heterogeneous, which 
translates into properties that vary between natural sources and between industrial 
suppliers. Hence, the structural heterogeneity needs to be reduced or controlled to the 
extent that reactive properties become predictable; this will facilitate the use of humic 
materials in remediation. From this perspective, Perminova and co-workers are 
developing “designer humics” in other words, they are chemically modifying humic 
materials to acquire desired reactive properties [178, 197].  

Fig. 12 conveys a conceptual model for designing reactive humic materials based on 
idea of reducing structural heterogeneity and polydispersity. This model introduces the 
concept of incorporating specific reactive moieties into the humic backbone for 
purposes of acquiring desired reactive properties, and of cross-linking humic materials 
for producing a desired reactive form (soluble, colloidal, solid). 
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Figure 12. Conceptual model of the design of humic reactive materials. The 
examples are shown for tailoring redox-active and cross-linked structures.  

using phenolformaldehyde-like condensation reactions with coal-based HS, and 
hydroquinone and catechol monomers (see Fig. 12). The modified humics possess 
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reducing capacities with respect to Fe(III) that are greater than parent humic materials 
[178]. Cathecholic derivatives are more effective at detoxifying Cu(II) [198] than 
humics modified with hydroquinone monomers; and this confirms the formation of non-
bioavailable Cu(II) chelates as the main mechanism of detoxification. The demonstrated 
consistency of the changes in structure and properties of the humic derivatives lay bare 
the feasibility of employing chemical modification for preparing humic materials of the 
desired properties. For example, an available supply of humics possessing a variety of 
quinonoid reactive centres and covering a wide range of electrode potentials presents a 
unique opportunity to probe a selection of electron shuttling interactions mediated by 
humics between ecotoxicants and diverse microorganisms. As a result, a strategy can be 
formulated for a use of humics as biostimulators to accelerate the microbial redox 
transformation of the contaminants. 

The different physical forms of the designed humics - soluble, colloidal, and solid, - 
can ensure control over interfacial interactions of HS with contaminants. The soluble 
forms can be used either for retarding heavy metals and radionuclides migration in soil 
or as biostimulators of metal reducing microbial communities. The colloidal and solid 
forms may be embedded into permeable polymer matrixes (e.g., polyurethane foams) for 
purposes of producing easily deployable sorbents suitable for vehicle and building 
decontamination. Solid forms can also be used as sorbents for PRBs or they can be 
applied to other forms of engineered flow-through systems. It is feasible that humic 
reactive materials be developed to suit dual needs of both site remediation and 
remediation monitoring. In particular, humics can be used as sorbents and reactive 
materials in novel strategies to quantify remediation performance and to better 
characterize remediation potential as described below. 

Hatfield with co-workers [199, 200] present a passive flux meter (PFM) method for 
measuring in situ groundwater flux and contaminant mass flux. The PFM is a self-
contained permeable unit that is inserted into a well. The interior composition of the flux 
meter is a matrix of hydrophobic and hydrophilic permeable sorbents. As ground water 
flows passively through the device, the internal sorptive matrix retains dissolved 
contaminants present in the volume of water intercepted. The total mass of contaminant 
intercepted and retained on the sorbent permits direct determination of the local in situ
contaminant mass flux. The latter yields a quantitative assessment of the source loading 
or strength, – a change of which is the primary indicator of the effectiveness of 
remediation. Fig. 13 illustrates the PFM as simply a permeable cartridge that is inserted 
into a well located down gradient from a contaminant source. The sorptive matrix is also 
impregnated with known amounts of one or more water-soluble resident tracers. These 
tracers are displaced from the sorbent at rates proportional to the groundwater flux; 
hence, the resident tracers are used to quantify groundwater flux. 

To enhance characterization of biological subsurface remediation, humics can be 
used to create new sorbents for a new class of PFM’s designed to measure microbial 
mass fluxes. Novel humic-based sorbents serve to intercept and retain microbial 
biomass. Used in conjunction with the traditional PFM, the passive biomass flux meter 
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(PBFM) offers an opportunity to better characterize spatial variations in microbial 
biomass and ecology - indicators of bioremediation.  

Passive Flux Meter:
segmented porous device
comprised of sorbent(s)
contains resident tracers
inserted into a well

Water Table

Monitoring Well

Fluxmeter Fluxmeter Technology ApplicationTechnology Application

Control Plane

Source Zone

UF Flux
Meters

Sentinel Well
for Compliance
Monitoring

Figure 13. Conceptual model and application of flux meter technology. 

Given the biocompatibility of humics together with their resistance to 
biodegradation, solidified humic matrixes represent ideal sorbents for bacteria and can 
be inserted into a monitoring well with little concern for possible negative repercussions. 
Hence, modified humics combined with passive monitoring methods presents new 
opportunities for the combined chemical and biological characterization of subsurface 
remediation. 
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5. Conclusions  

An overview of the interactions of HS with ecotoxicants and living organisms in the 
polluted environments in the context of remediation chemistry allows us to conclude that 
HS can perform perform multiple functions within a remedial strategy. For example, it is 
shown that HS can function as: binding agents and detoxicants; sorbents and flushing 
agents; redox mediators of abiotic and biotic degradation; and nutrient carriers, 
bioadaptogens and growth-stimulators. With the above functions characterized, it is then 
proposed that humic-based products hold great promise as reactive agents for in situ 
remediation. The most promising technologies include: enhanced bioremediation; 
permeable reactive barriers; in situ flushing; and phytoremediation. However, to develop 
successful humic-based applications, it is stressed that the properties of HS must be 
studied in the context of each remedial technology. For example, research is needed to 
define the kinetics, stability, and longevity of humic complexes and/or adducts with 
organic chemicals and heavy metals. Results from such research are salient for the 
proper evaluation of humics as reactive matrices for PRB’s and other technologies.  

In the final section of this chapter, a novel concept is introduced for the development 
and application of designer humics. For the most part, natural humics possess an 
elemental composition that is non-stoichiometric and a structure that is irregular and 
heterogeneous; consequently, reactive properties vary widely between humic samples 
from various sources. Using example methods of chemical modification described 
herein, it is proposed that the properties of humics be tailored to satisfy the needs of a 
given remediation technology. Pursuing this approach, it is expected that the utility and 
the value of humics will expand.  
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