Элементный анализ гуминовых веществ. Обработка и интерпретация.

Общая характеристика элементного состава и способы его проведения были подробно обсуждены на предыдущей лекции. Сегодняшнее занятие посвящено практическим вопросам проведения элементного анализа.

1. Подготовка гуминовых веществ к анализу

Для проведения элементного анализа используются ГК и ФК в твердом состоянии, высушенные и растертые в порошок в агатовой ступке. Последний этап необходим для гомогенизации препаратов ГВ, что является важным условием получения репрезентативных робастных результатов.

2. Определение влажности препаратов ГВ

Орлов и Гришина (Орлов, Д.С. и Гришина, Л.А. Практикум по химии гумуса: Учеб. пособие, М.: Изд-во Моск. ун-та, 1981, 272 с.) рекомендуют проводить определение влажности препаратов следующим образом: растертый образец ГВ высушивают в вакууме, взвешивают и оставляют на 12-24 ч при доступе воздуха, затем образец снова взвешивают и узнают количество поглощенной воды. Далее на анализ берут вещество с адсорбированной влагой, а в результаты анализа вносят соответствующие поправки.

3. Обработка данных элементного анализа, полученных с анализатора («первичных данных»)

Результаты элементного анализа, получаемые с анализатора, представляют собой процентное содержание элементов С, H, N в массовых процентах и массу несгораемого остатка. Если было оговорено отдельно, можно также получить данные о содержании S (рис. 1)

Предполагаемая структурная формула	Дата запол 29.01.2		Дата проведения анализа Уч.02.0	Масса образца, мг Брутто-формула Устойчивость при хранении устойчиво	
гумусовые кислоты	Шифр ФАРМ	Į.	Мол. масса 		
С, Н, N навеска-остаток	Физ. состо ТВ.	янне	Т.пл. (Т.кип.)		
Синтетик (лаборатория, фамилия, подпись, телед Ковсиенко АНА ФОХ, 55-46	Зав.лаб. (рук. группы) (фамилия, подпись)				
Оператор (фамилия, подпись)		Комментари	4,89	0 0.130	
ЯМР	ик	УФ		лый анализ	
Исследуемое ядро Растворитель			Элемент С Вычислено 56,86 57,13	н N Друго 3.43.2.87 3.44.3.01	

Рис. 1. Типичный бланк с данными элементного анализа ГВ, получаемых на элементном анализаторе.

По полученным данным рассчитывают значения зольности препарата и содержание углерода, водорода и азота в расчете на беззольную безводную навеску.

3.1. Расчет зольности

На основании данных о навеске и несгораемом остатке вычисляется значение зольности (Ash,%) по формуле:

Ash,% =
$$\frac{m}{m_0} \times 100\%$$

3.2. Расчет содержания элементов на беззольную безводную навеску

Расчет содержания элементов на беззольную пробу проводят, принимая, что содержание органического вещества (ОМ) в пробе составляет:

$$OM,\% = 100\% - Ash,\%$$

Для этого результаты по содержанию элементов, полученные с приборов (C,%; H,% и N,%), пересчитывают согласно следующим формулам:

$$C_{Ash}$$
,% = $\frac{C$,% $\times 100$ %

$$H_{Ash}$$
,% = $\frac{H,\%}{OM.\%} \times 100\%$

$$N_{Ash}$$
,% = $\frac{N,\%}{OM.\%} \times 100\%$

где C_{Ash} ,%, H_{Ash} ,% и N_{Ash} ,% – процентные содержания в расчете на беззольную навеску углерода, водорода и азота, соответственно.

Следующим этапом является пересчет данных в расчете на безводную навеску, принимая, что содержание органического вещества (OM_{H_2O} ,%) с учетом влажности исходного образца (H_2O ,%) составляет:

$$OM_{H_2O}$$
,% = OM ,% – H_2O ,%

Сначала проводят учет массовой доли водорода навески, содержащегося в гигроскопической воде (H_{aq},%) по формуле:

$$H_{aq}$$
,% = $\frac{M(H)}{M(H_2O)} \times H_2O$,% = $\frac{2}{18} \times H_2O$,%

где M(H) и $M(H_2O)$ – атомная и молекулярная массы водорода и воды, соответственно.

Затем аналогичным способом проводят расчет количества кислорода, содержащегося в гигроскопической воде (O_{aq},%):

$$O_{aq}$$
,% = $\frac{M(O)}{M(H_2O)} \times H_2O$,% = $\frac{16}{18} \times H_2O$,%

где M(O) – атомная масса кислорода.

Наконец, производят окончательный расчет содержания элементов в расчете на беззольную безводную пробу по следующим формулам:

$$\begin{split} C_{Ahs,\,H_2O},\% &= \frac{C_{Ash},\%}{OM_{H_2O},\%} \times 100\% \\ H_{Ahs,\,H_2O},\% &= \frac{H_{Ash},\% - H_{aq},\%}{OM_{H_2O},\%} \times 100\% \\ N_{Ahs,\,H_2O},\% &= \frac{N_{Ash},\%}{OM_{H_2O},\%} \times 100\% \\ O_{Ahs,\,H_2O},\% &= 100\% - O_{aq},\% - \sum \left(C_{Ahs,\,H_2O},\%,\,H_{Ahs,\,H_2O},\%,\,N_{Ahs,\,H_2O},\%\right) \end{split}$$

где $C_{Ahs,\,H_2O}$, $H_{Ahs,\,H_2O}$, $N_{Ahs,\,H_2O}$ и $O_{Ahs,\,H_2O}$ – содержания кислорода, водорода, азота и кислорода в пересчете на беззольную безводную навеску, соответственно. Если при анализе были получены данные по содержанию серы, то пересчет ее

содержания ведется аналогичным образом, а при окончательном расчете содержания кислорода расчет проводят как:

$$O_{Ahs,\,H_2O}$$
,% = 100% – O_{aq} ,% – \sum ($C_{Ahs,\,H_2O}$,%, $H_{Ahs,\,H_2O}$,%, $N_{Ahs,\,H_2O}$,%, $S_{Ahs,\,H_2O}$,%) где $S_{Ahs,\,H_2O}$,% – содержание серы в расчете на беззольную безводную навеску.

4. Вычисление атомных отношений

Результаты элементного анализа позволяют характеризовать особенности ГВ различного происхождения и дают некоторые сведения о принципах их строения. Однако массовые проценты содержания элементов не дают представления о роли отдельных элементов в построении молекул. Для выяснения этой роли вычисляют атомные отношения, составляют простейшие формулы и анализируют молекулярное строение, пользуюсь принципами графостатистического анализа.

Расчет количества молей, отвечающих найденному массовому составу беззольной безводной пробы ГВ, проводят по следующим формулам:

$$\begin{split} &C_{at} = \frac{C_{Ahs,\,H_2O}}{12} \\ &H_{at} = \frac{H_{Ahs,\,H_2O}}{1} \\ &N_{at} = \frac{N_{Ahs,\,H_2O}}{14} \\ &S_{at} = \frac{S_{Ahs,\,H_2O}}{32} \\ &O_{at} = \frac{O_{Ahs,\,H_2O}}{16} \end{split}$$

где C_{at} , H_{at} , S_{at} , N_{at} , и O_{at} – содержание молей углерода, водорода, азота, серы и кислорода, соответственно.

Для расчета атомных процентов пользуются следующими формулами:

$$\begin{split} &C_{at},\% = \frac{C_{at}}{\sum (C_{at},H_{at},N_{at},S_{at},O_{at})} \times 100\% \\ &H_{at},\% = \frac{H_{at}}{\sum (C_{at},H_{at},N_{at},S_{at},O_{at})} \times 100\% \\ &N_{at},\% = \frac{N_{at}}{\sum (C_{at},H_{at},N_{at},S_{at},O_{at})} \times 100\% \\ &S_{at},\% = \frac{S_{at}}{\sum (C_{at},H_{at},N_{at},S_{at},O_{at})} \times 100\% \end{split}$$

$$O_{at}$$
,% = $\frac{O_{at}}{\sum (C_{at}, H_{at}, N_{at}, S_{at}, O_{at})} \times 100\%$

где C_{at} ,%; H_{at} ,%; S_{at} ,%; N_{at} ,%; и O_{at} ,% – процентное содержание молей углерода, водорода, азота, серы и кислорода, соответственно.

Далее можно рассчитать основные атомные отношения, используемые в химии гуминовых веществ:

$$H/C = \frac{H_{at}}{C_{at}}; \ O/C = \frac{O_{at}}{C_{at}}; \ C/N = \frac{C_{at}}{N_{at}}$$

Диапазон значений этих отношений для гуминовых веществ составляет 0.5-1.4 для O/C и 0.2-0.6 для H/C.

На основании проведенных расчетов можно составить брутто-формулу (простейшую формулу) для препарата гуминовых веществ.

4. Составление простейшей формулы гуминовых веществ

Простейшие формулы показывают минимальные количества атомов, входящих в молекулу. Для этого найденные количества молей элементов делят на наименьшее из них (в гуминовых веществах наименьшее количество молей представлено, как правило, азотом или серой, если проводили определение последней). В результате получают простейшие атомные множители. Пример подобного расчета приведен в табл. 1.

Таблица 1. Пример расчета простейшей формулы гуминовых веществ (по Орлов, Д.С. и Гришина, Л.А. Практикум по химии гумуса: Учеб. пособие, М.: Изд-во Моск. ун-та, 1981, 272 с.)

Элементы	С	Н	0	N
Число молей	4.8	3.4	2.2	0.3
Простейший атомный множитель	16.0	11.3	7.3	1
Наименьшее целое значение	48.0	33.9	21.9	3.0
Простейшая формула: С ₄₈ H ₃₄ O ₂₂ N ₃				

Так как в молекуле не может быть дробного числа атомов, найденные величины простейших атомных множителей умножают на наименьшее число, приводящее значения к целому числу атомов. В примере, приведенном в табл. 3, таким множителем является число 3. Таким образом, простейшей формулой гуминовых веществ в нашем случае будет $C_{48}H_{34}O_{22}N_3$.

4. Расчет ненасыщенности гуминовых веществ

Брутто-формула дает представление не только о количестве атомов в химическом соединении, но и позволяет оценить в нем количество разных типов связей. Для проведения такой оценки обычно пользуются общеизвестными правилами, что валентность углерода равна 4, а при полной насыщенности углеводород имеет формулу C_nH_{2n+2} . Появление ненасыщенности в виде одной двойной связи в молекуле за счет перекрывания π -орбиталей сопровождается удалением двух атомов водорода. Поэтому наличие двух «недостающих» водородов может трактоваться как наличие одной ненасыщенности (U), которая рассчитывается как:

$$U = \frac{2C + 2 - H}{2}$$

где С и Н – количество атомов углерода и водорода в молекуле, соответственно.

Однако в молекуле гуминовых веществ наряду с углеродом и водородом присутствуют кислород и азот. Как сказывается наличие этих элементов на расчет ненасыщенности? Так как кислород двухвалентен, его присутствие никак не сказывается на расчете ненасыщенности молекулы. В случае присутствия в молекуле атомов азота (валентность 3), соединение обладает на один атом водорода больше, чем углеводород с таким же количеством атомов углерода. Поэтому при расчете ненасыщенности из общего количества атомов водорода вычитают количество атомов азота:

$$U = \frac{2C + 2 - H - N}{2}$$